Thermo Fisher S C I E N T I F I C

The world leader in serving science

UPS功能应用和 Avantage数据处理

葛青亲 博士 13774363530 Albert.ge@thermofisher.com 表面分析 应用专家 赛默飞世尔科技(中国)有限公司

I: UPS原理和功能

- ・UPS简介
- UPS技术介绍
- Au材料的UPS标准谱

II: UPS采谱设置与数据处理

III: UPS的应用举例

- 测量OLED材料的价带能级结构
- 在有机太阳能(OSC)电池上的应用
- 结合MAGCIS深度剖析共混聚合物

The world leader in serving science

UPS简介

光电子的动能

Density of states

UPS测量??的"指纹"?

- 元素芯能级的电子和原子核靠的非常近,和其他原子相互作用比较弱,反映的是每个原子所代表的元素的本征性质。
- 原子费米能级附近的电子(价态电子)在材料内部比较巡游,携带的是整个材料体系的性质,因此反映的是材料电子关联相互作用之后的信息。

UPS简介小结

- UPS的工作原理和XPS一样,但是能量远远小于X光, 因此有比较好的能量分辨率来研究价带的电子结构,是 XPS手段的一个重要补充
- XPS探测的是芯能级的电子信息,反映的是对应元素的 本征线性,由此来对材料的元素组成,元素价态情况等 进行分析。
- 而UPS探测的是价带电子的结构信息,价带电子在材料
 中比较巡游,到处运动,反应的是整个材料的关联电子
 结构。
- 一般的UPS光源通过对惰性气体放电来实现,He、Ne、Ar、Kr、Xe等,能量一般在几十个eV左右。

GAS	PHOTON ENERGY (EV)
Ar I	11.7
Ne I	16.8
He I	21.2
Ne II	26.9
Ar II	30.3
He II	40.8

氦气放电发射

- 通过气体放电产生的UV光一般含有好几个线型。这些本征线型的光子能量和相对强度也很不相同。
- 其中主要的能量是Hel和Hell,见下表格。
- 而其中的He-Iα 线型 (21.22 eV) 是强度最强的,因此其他的线型光子能量组成我们一般可以忽略。

Emission Line	Photon Energy / eV	
Helα	21.22	
Helβ	23.09	
Helγ	23.74	
Helδ	24.04	
Helε	24.21	

Emission Line	Photon Energy / eV
Hell a	40.81
Hell β	48.37
Hell y	51.02
Hellδ	52.24

Hel 的UPS谱

Thermo Fisher SCIENTIFIC

UPS的技术指标

- UV灯——He灯
 - 光斑大小 (1~2mm)
 - •能量分辨率 90~120 meV
 - •能量分析器分析电子动能从0 eV开始
 - 光子通量 (1.5 x 10¹² photons/second)
 - 双极差分系统,保证分析腔真空

利用UV灯和X光得到的Ag价态谱比较

- 材料的价态谱既可以利用UPS得到,也可以在测量XPS时测得。而相比来说, XPS(左侧)到的谱信号强度比较弱,需要很长的时间才能得到信噪比好的谱。
- 而UPS得到的价态谱强度要打得过,要高3、4个数量级,这是因为低能电子相对于21.2eV的电子有更大的光电离截面.因此采谱时间更快,同时UPS有高的能量分辨率,可以清楚分辨一些比较精细的feature。

标准金样品的UPS谱图分析

苯表面吸附质和纯气/凝聚相的UPS比较

HeI线激发的清洁的Ni片和吸附有苯的 Ni片的UPS谱

吸附分子的UPS谱与自由分子的谱进行 了比较

在研究表面吸附时,可以了解吸附物质 的性质以外,以及吸附物质与表面是否 发生相互作用以及相互作用的程度等

气态的苯的光电子谱(hv=21.2eV)

The world leader in serving science

□··· ▶ L: UPS_20141030		
E Au	Manual Source Object Manual Source General	×
Ion Beam Etch (Disabled)	Selected Gun Mode Hel UPS	
Ion Beam Etch #004 {Etching, 66 sec of 120 sec} Valence_etched2	Source Energy 21.2 eV	
选择手动源设置,并手动启动紫外灯	Apply Re	set Close

X-Ray

Ion

Flood

因为紫外灯能量为21.2eV,一般仪器的功函数在4eV左右, 因此设置采谱范围-5—20eV 能足够满足采谱的需要

Close

Reset

Experiment is running: Estimated r

Apply

UPS的表面敏感性

UPS的表面敏感性——清洁前后Au的价带谱结构

SCIENTIFIC

UPS的表面敏感性——表面C污染信号

偏压设置——集成于lon Gun设置

费米边

x

费米边——加了-10V偏压

SCIENTIFIC

	1 🖵 🖉 🗸	(2 -) =				-		WF	calcula	ator.xlsx - Microsoft	Excel								
	Home	Insert	Page Layou	t Formulas	Data	Review \	/iew A	Acrobat											0 _ = x
Paste	∦ Cut ≧⊇ Copy ∛Forma	it Painter	余体 ■ <u>I</u> <u>U</u>	• 11 • 🖽 • 🔕 •			≫-) ⊈≢	📑 Wrap Text 💀 Merge & Ce	nter 🔹	General	→ 00.00	Conditional Fo Formatting ▼ as T	rmat Cell able + Styles +	Insert Delet	te Format	Σ AutoSum Fill → Clear →	Sort &	Find & Select *	
	Clipboard	Gi.		Font	G		Alignm	ient	G.	Number	G.	Style	s	Cell	s	E	diting		
	M11	•	(• f;	c															*
	A	В	С	D	E	J	K	L	J	I N) P	Q	R	S	Т	U		V
1								Paste c	ut-of	f data to y	ello	/ box							
2								Enter ma	aximu	um from diff	eren	tiated data	in blue	box (as :		D	fferentiated	cut off	=
3																	A		
4								D 1.									/ \		
5								Kesult											_
7										eV									_
8																	1!1		_
9																	- i \		
10																2 3	4 5	6	7 1
11																	<inetic ener<="" td=""><td>gy (eV)</td><td></td></inetic>	gy (eV)	
12																			
13																			
14																			
10																			
17																			
18																			
19																			
20																			
21																			
22																			
24																			
25																			
26																			
27																			
28	N WE C	alculator	Sheet? She	oot3 / 🕅 /															
Ready	VVP C	alculator	Sheetz / Sh												IIII	mnu	100%		- U
)E																	ner	mo	risner
20																	SCI	EN	TIFIC

C .,) 🖬 🤊 -	(21 →) =	-					WF	calculat	or.xlsx - Microsoft	Excel									o x
	Home	Insert	Page Layout	Formulas	Data	Review \	/iew Ac	robat											0	– = ×
Pas *	Left Cut Left Copy te ✓ Forma Clipboard	t Painter	ண B <i>I</i> <u>U</u> →	• 11	▼ A A A ▼ A A ▼		Alignmer	्रि Wrap Text ख्रे Merge & Ce nt	nter 🔹	General	▼ 0.00 •.0	Conditiona Formatting	al Format * as Table * Styles	Cell Styles *	Insert Dele	te Format	∑ AutoSum ↓ Fill ▼ ∠ Clear ▼ E	Sort & F Filter * So	nd & elect *	
	A1	, (f_x			^			^											×
	A	В	С	D	E	J	K	L	M	N	C)	P	Q	R	S	Т	U	I	, –
1								Paste c	it-of:	f data to y	ellow	box		-						
2	Axis	Energy	Elements=	2501				Enter ma	aximu	<u>m from diff</u>	erent	iated d	data in	blue	box (as :		D	ifferentiated	ut off	
3																		A		
4	D:\Thermo	oFisher\2	0141030\sh	ao qinsi'	UPS_2014	1030\UV_Ы	ased\Au	#005\Vale	nce_et	ched_Biasel0	VGD							(1)		
6								Kesuit										/!\		
7										eV										
8																				
9																		i (
10	Binding H	Energy (E)													1	2 3	4 5	6	7 1
11	eV		Counts /	s														Kinetic Energ	y (eV)	
12	10		215497																	
13	9.99		217011																	
15	9.90		216613																	
16	9,96		215580																	
17	9.95		214314																	
18	9.94		217153																	
19	9.93		214232																	
20	9.92		210254																	
21	9.91		210771																	
22	9.9		212906																	
23	9,88		207733																	
25	9.87		210531																	
26	9.86		208332																	
27	9.85		205079		<u>م</u>															
28		alculator S	205736 peet2 Sheet	3 / 1	43															
Read	ly											Averag	ge: 1399859.3	399 Cou	unt: 5011 Sui	m: 700349657	72 🔲 🗆 🗆	100% 🕞)(

								/										
	1 . 7	+ (² +) +						WF	calculatora	dsx - Microsoft	Excel							- 0 ×
	Home	Incert	Page Lavout	Formulas	Data	Deview \	lieuw Acr	o kat										@ _ = X
	Home	Insert	ruge Luyout	1 onnulus	Data			your .							1			
	🖌 💑 Cut		宋体	- 11	· A A	= = =	27	Wrap Text	Ge	neral	-			- E -		Σ AutoSum	` 🖅 🖷	
Pac	🚽 🝙 Copy	у			A abc				1	- 01 - E	0.00 Co	nditional Form	at Cell	Incert Dele	te Format	😺 Fill 🔻	Sort & Find	8,
	🐪 🍼 Form	nat Painter	вто		A 'A'	= = 7		ag Merge & Cei	nter 👻 📑	· % , .0	o ⇒.o For	matting * as Tab	le - Styles -	* *	*	🖉 Clear 🔹	Filter * Selec	tr i
	Clipboard	l G		Font	Gi.		Alignmen	it	Gi -	Number	G	Styles		Cell	s		Editing	
	A1	- (• f _x															×
	A	В	С	D	IF	T	K	L	M	N	0	Р	0	R	S	Т	U	V
1					L L			Paste cu	it-off	data to y	ellow b	ox	-					
2	Axis	Energy	Elements=	2501				Enter ma	aximum	from diff	erentia	ted data i	n blue	box (as :			Differentiated cut of	m
3																	A	
4	D:\Ther	moFisher∖	20141030\sh	nao qinsi∖	UPS_2014:	1030\UV_bi	ased∖Au	#005\Valer	nce_etch	ed_Biase10.	VGD						/i\	
5								Result								/		
6										οV							/ i \	
7										C V								
8																		
9																		
10	Binding	Energy ((E)													2 3	4 5	6 7 1
11	eV		Counts /	S													Kinetic Energy (e	V)
12	1	.0	215497															
13	9.9	19	217011															
14	9.9	18	216613															
10	9.9	91 96	214842															
17	9.9	15	210000															
18	9.9	14	214314															
19	9.9	13	211133															
20	9.9	2	210254															
21	9.9	1	210771															
22	9.	9	212956															
23	9.8	19	211479															
24	9.8	8	207733															
25	9.8	37	210531															
26	9.8	6	208332															
27	9.8	35	205079															
28		al Calculator	Sheet2 Sheet	-3 / \$7 /	43													
Read		Carculacor	Sheetz Z Sheet									Average: 13998	59.399 Cou	unt: 5011 Su	m: 70034965	72 🕮 🔟 🛛	100%	
Reau												Allerage, 19990	55,555 CO					· · ·

		1) - (2	-) =						W	F calcula	ator.xlsx -	Microsoft	Excel									0 X	
	н	ome I	Insert	Page Layout	Formulas	Data	Review	View A	crobat												0) _ 🗖 🗄	×
Pas	te 🖋	Cut Copy Format Pa	ainter	荣体 B I <u>U</u> →	- 11			<mark>∎</mark> ≫~ ∎ €≢ €≢	📑 Wrap Text	enter *	General	% ,	▼ .00 () .00 F	Conditiona Formatting	al Format	Cell • Styles •	Insert Deler	te Format	Σ AutoSum Fill ▼ Clear ▼	Sort & F	ind &		
	Clipb	ooard	G		Font	6		Alignm	ent	G.	N	umber	G.	-	Styles		Cell	s	Ec	diting			
	E	1	- (f _x	5.55																		¥
	Į	A	В	С	D	E	J	K	L	N	lí –	N	0		Р	Q	R	S	Т	U	Ţ	1	
1						5.55	ļ		Paste c	ut-of	ff dat	a to ye	ellow	box									
2	Axis	Er	hergy	Elements=	2501				Enter m	aximu	um fro	m diffe	erenti	iated o	data in	ı blue	box (as :			A	cut off		
3	D•\T1	hermoFi	icher\2	20141030\eb	an dinci)	HPS 20141	030/110 1	oiaced\≬,	1 #005\Vale	nce et	tched l	Riace10	VCD										
5	D. (11	IICI MOP I	Lanci (2	20141030 (81	ao qinsi (015_20141	.030 (0+_1	JIASCU(AC	Result	ince_e	(cneu_)		VGD										
6										c	07	-1/											
7										0.	. 21	ev											
8																				1:1			
9																							
10	Bind	ing Ene	ergy (E																2 3	4 5	6	7 1	
12	eν	10		215497	S				↓笘須	크즈	山台と	1去()	┝╬						,	<inetic energ<="" td=""><td>y (eV)</td><td></td><td></td></inetic>	y (eV)		
13		9,99		217011					丨异忭	于士	רחר	旧と	エと	<u></u>									
14		9.98		216613				1-		0-	7 - \	1											
15		9.97		214842				1	1-1-6	.21	/e\	/											
16		9.96		215580																			
17		9.95		214314																			
18		9.94		217153																			
20		9.93		214232																			
21		9.91		210234																			
22		9.9		212956																			
23		9.89		211479																			
24		9.88		207733																			
25		9.87		210531																			
26		9.86		208332																			
28		9.80		205079																			-
14 4	► H _	WF Calcu	lator S	heet2 / Sheet	3 / 🞾 🦯									14		_						► I	
Read	iy																			100% (=) (Ð

$\Phi = hv - (E_{Cutoff} - E_{Fermi}) = 21.2 - (9.75 + 6.27) = 5.2eV$

SCIENTIFIC

⁴Appl. Phys. Lett., Vol. 76, No. 24, 12 June 2000

■ UPS 分析PFO OLED薄膜

- E_F = 24.85 eV
 - 非弹性电子截止边= 7.92 eV
 - 功函数 = 21.2 eV (24.85 eV 7.92 eV) =4.3 eV

■ UPS 分析PFO OLED薄膜

- E_F = 24.85 eV
- 非弹性电子截止边= 7.92 eV
- 功函数= 4.27 eV
- 最高占据态 (HOS) = 23.52 eV

Expanded HOS region of UPS data for PFO

Expanded HOS region of UPS data for PFO

- 如图,对4个PEDOT样品进行分析。
 拼盘相机(可选组件)得到的几个样
 品和金箔样品一起的安装示意图。
- PEDOT镀膜以水平带状的结构沉积在 玻璃衬底上。
- 这5个样品的表面通过铜箔导电胶带连接在一起,保证这些样品的上表面电势相等,让我们在UPS实验时标定费米面位置。

- •利用金箔得到的费米位置,将 得到的UPS谱转换成结合能形 式。
- •我们将0-10eV范围的图谱进行 归一化比较。
- 可以看到样品1-3号的UPS谱十 分相似,而样品4和他们的表 现很不一样。这表明PEDOT4 的表面和其他样品有着不一样 的化学性质。

- 可以看到PEDOT4的谱重从0eV 开始一直很弱,直到1.5eV、
 3.8eV和6.8eV附近都开始增强
 ,表明有对应的3条带出现。
- 这一点,我们从样品1中更明显的看到转变趋势。而2号和3号样品则有差不多的机构,只有4号的这些特征很弱。
- 对比于XPS数据的C1s谱,可以 了解到PEDOT 4相比于其他样 品有着更强的C-C\C-H峰,所以 它的价带结构变弱可能是因为 它的表面有更多的污染造成的

XPS and UPS Valence Bands

- •我们进一步将XPS的价态谱和 UPS图谱进行比较。
- 通过竖直线标出的一些能级位置 ,我们可以看到他们的形状和 UPS谱得到的基本一致,只是相 对强度有一些不同,这是由于不 同能带的光电信号强度(光电激 发矩阵元)随着探测光子能量的 改变而改变造成的。
- 这表明材料的表面化学主要还是 基于PEDOT薄膜,虽然之前的 XPS谱中可能看到衬底ITO的信号 ,但是对于UPS谱来说这些能级 贡献要小得多。

 右图所示是4块ZHF样品和金箔一起安 装在样品托上,5个样品之间通过导电 铜箔胶带连接,以保证之间等电势。

对于其中的一些样品表面有明显的特征,如4、5,因此实验探测时选用的是靠近样品中心的均匀区域。

系列ZHF Samples

UPS Spectra - Sample Grounded, with Neutralisation • 然后可以看到,因为电荷的 15 Scans, 6 m 15.6 s, CAE 2.0, 0.05 eV 补偿这些UPS谱看起来都比 ZHF 2 ZHF 4 ZHE 5 1.00E+06 较正常,有一些特定的能带 9.00E+05 结构出现。 8.00E+05 • 其中ZHF2样品和之前在未开 7.00E+05 中和枪情况下得到的几乎完 6.00E+05 全相同(二次电子截止边表 Counts / s 5.00E+05 现出一些不同)。 4.00E+05 • ZHF 4号和5号样品的UPS十 3.00E+05 分相似,而ZHF 7号样品表现 2.00E+05 出有一些不同,可能是由于7 号样品因为不同的表面污染 1.00E+05 或者表面改性造成。 0.00E+00 17 16 15 14 13 12 11 10 3 2 0 -1

系列ZHF Samples

UPS Spectra - Sample Grounded, with Neutralisation • 而石墨烯富裕的ZHF2号样品 15 Scans, 6 m 15.6 s, CAE 2.0, 0.05 eV 和其他样品表现的很不一样 ZHF 2 ZHF 4 ZHE 5 1.00E+06 ,特别是在9-12eV范围,这 9.00E+05 表明其他样品表面没有明显 的石墨烯信号。 8.00E+05 7.00E+05 • 这与我们之前的XPS测量符 6.00E+05 合。 Counts / s 5.00E+05 4.00E+05 3.00E+05 2.00E+05 1.00E+05 0.00E+00 17 16 15 14 13 12 3 2 11 10 5 1

Binding Energy (eV)

0 -1

系列ZHF Samples

Thermo Fis

SCIENTIFIC

 而进一步将ZHF 4号样品的 UPS谱和相同条件下测得的 PMMA参考价态谱进行比较 ,可以看到他们的能带结构 也十分相似,可以进一步证 实该样品表面主要是由 PMMA组成。

─● UPS的应用举例—— UPS测量OLED材料的价带能 级结构

Escalab 250Xi Multitechnique

REELS 数据

OLED 薄膜

能级分布图

PFO的能级分布图 结合 REELS 和 UPS 数据

- 1. 利用250Xi系统的两种技术结合
- 2. 建立了PFO材料的能级分布图
- 3. 揭示了材料价带和导带的电子结构
- 4. 测量材料的能隙 (HOS 和 LUS的能量差)
- 5. π1* 对应于最低未占据能级(LUMO)
- 6. PFO的能隙, E_g = 2.5 eV

UPS信息

REELS 信息

Valence band (electronic structure) diagram for PFO using REELS and UPS data

ENTI

UPS的应用举例—— UPS 在有机太阳能(OSC) 电池上的应用

The world leader in serving science

使用UPS测量材料改性前后的功函数

-个普适方法来获得低功函数的有机电极材料

Α

Yinhua Zhou et al, Science 336, 327 (2012)

-● UPS的应用举例—— 价带谱结构用于分析共混聚合 物组成

■ UPS结合MAGCIS深度剖析共混聚合物

- 聚乙烯和聚丙烯的共混聚合物主要应用在食品包装工业
- 这些共混聚合物膜表面几个微米内的化学组 分和化学价态可能会改变
 - 需要一种分析手段来探测膜的化学组分和化 学态信息
 - 还需要一种方法来溅射剖析但是要保持它的 化学组分和化学态信息不变
- 使用UPS和MAGCIS来分析 PE/PP 共混聚合物膜
 - 氩团簇离子束可以用来分析膜材料的组分、 化学态以及厚度信息

用于食物包装袋的聚合物材料

Acknowledgements Simon Malone, Analytical Expert, Innovia Films

UPS价带分析

At%

2.52

95.56

1.91

XPS元素鉴定和定量分析

硅的化学态

- 氩团簇深度剖析共混聚合物
 - 氩团簇剖析
 - MAGCIS离子源被用来剖析共混聚合物 样品
 - MAGCIS可以产生单原子或者团簇 离子束,易于进行有机和无机混合 物的深度剖析
 - 分析表明聚二甲基硅氧烷居于在最表面的16nm深度
 - 深度的尺度通过剖析硅片上80nm
 的聚乙烯 来标定(使用椭偏光度法 来测量)

UPS价带分析

- UPS分析CH₂/CH₃ 的混合物
 - 价带分析
 - •测试样品得到的XPS价带谱以及聚乙烯和聚丙烯标准样品的价带谱
 - 测试数据通过使用两种标准样品的标准 价带谱来进行最小二乘法拟合
 - 得到了很好的拟合结果,而且结果 表明测试样品是聚乙烯和聚丙烯的 混合物,是他们的函数
 - 而且从图谱拟合可以得到PE和PP的比例约为2:1

■ UPS分析CH₂/CH₃ 的混合物

- 价带定量分析
 - 将得到的价带数据和文献中的数据比 较 "Quantitative analysis of surface ethylene concentrations in ethylenepropylene polymers using XPS valence band", Surf. Interface Anal. 26. 425-432 (1998).
 - UPS谱和文献中的数据含有79%乙烯 的数据基本一致

- UPS结合MAGCIS剖析测试样品
 - 氩团簇剖析
 - 探测到的价带数据以样品深度为函数并
 且使用聚乙烯和聚丙烯的标准谱来拟合
 - 实验得到CH₂/CH₃ 的相对含量以深度为 函数而变化

XPS价带剖析

-●UPS的应用举例—— 价带谱结构用于材料组成

The world leader in serving science

SnO与SnO2 等等

Binding energy Sn3d _{5/2} / eV
485.2
486.0
486.6

UPS功能和应用回顾

UPS可以告诉我们:

- 价态谱信息
- 一些共混物材料中的物质成分
- 功函数信息
- 结合REELS可以得到价带、导带相对于Fermi能级的 分布

•更多信息参考ThermoFisher 在线网址,<u>www.xps-</u> <u>simplified.com</u>

Welcome to Thermo Fisher Scientific !

欢迎到赛默飞世尔科技公司做客!

更多信息参考赛默飞 XPS网络专题

http://www.thermo.com.cn/XPS

K-Alpha XP S 系统

高效能 XPS 测试能力

- 快速、直观的工作流程
- 交互式和完全自动化操作
- 互联网远程操控
- 内标自校准
- NEW! MAGCIS 双模式离子源

ESCALAB 250Xi XPS 系统 世界一流性能和多功能拓展性

- 快速、定量平行成像
- •优于 5µm 束斑回溯成谱
- 优越的能量分辨率
- •标配 REELS 和 ISS 技术
- 可选配多技术 (AES, UPS)
- NEW! MAGCIS 双模式离子源

Theta Probe 平行角分辨 XPS 系统

高效能薄膜分析能力

- 平行角分辨 XPS
- 非破坏性深度分析
- 完整的角分辨 XPS 软件包
- •针对小特征分析的微聚焦 X 射线源
- 多技术和样品制备功能可选

